VOCAB LIST FOR CNS AND ANS LECTURE

CITOLOGY

- 1. Neurons
- 2. Neuroglia glia

1. Neurons

Soma: grey matter Nuclei Ganglia

Processes: white matter 1. Dendrites: multiple (multipolar neuron) 2. Axons, w synaptic knobs

2. Neuroglia

Astrocytes: structural support

Microglia: scavenging/repair

Ependymal cells: lining internal cavities

~ simple cuboid epithelium lumenal side: secretion of CSF and cilia to move it

Insulators:

Cells with processes wrapping around axon, forming a lipid sheath ~ plasma membrane *Axolemma*

CNS:

oligodendrocytes (octopus-like) Peripheral:

Ganglia: Satellite cells Fibers: Schwann cells

CIRCUITRY OF THE NERVOUS SYSTEM

Receptor \rightarrow Afferent fiber (1)

Interneuron (integration, 2)

Effectors ← Efferent fiber (1)

1=Peripheral nervous system

- 12 pairs of cranial nerves
- 31 pairs of spinal nerves

2= central nervous system (processing center)

Receptors:

- 1. Visceral
- 2. Somatic
- 3. Propioreceptors
- 4. Special receptors

Effectors:

Visceral: smooth muscle/glands Somatic: skeletal muscle

Tracts:

Ascending: First-through-third order

Descending: Two neurons (upper and lower)

Afferent:

Spinothalamic Somatosentory imput Spinoreticular Pain from tissue injury Gracile and cuneate fasciculi (above or below T6) visceral pain vibration, deep discriminative touch Spinocerebellar proprioception

<u>Efferent:</u> Corticospinal

Corticospinal Somatomotor output (fine motor control) Reticulospinal Regulating awareness of pain Balance and posture

Tectospinal

Reflective head turning in response to visual and auditory stimuli. Superior and inferior colliculi

Vestibulospinal Balance and posture

Decussation:

Ascending: Gracile and cuneate fasciculus decusate at medial lemniscus; other tracks: spinal cord

Descending: most descending tracks don't decusate (except tectospinal, in midbrain)

GROSS ANATOMY OF THE CNS

Spinal cord:

- 1. Anterior median fissure
- 2. Posterior median groove
- 3. Central canal

<u>Grey matter (central)</u> gray commisures P,L,A horns

<u>White matter (peripheral)</u> D,L,V columns, w ascending and descending tracks

Brain:

<u>1. Brainstem</u>, with reticular system (controlling states of consciousness + *central pattern generators*)

1.1 Medulla oblongata1.2 Pons1.3 Midbrain

<u>2. Diencephalon</u>2.1 Thalamus: gateway to cerebrum2.2 Epithalamus: pineal gland2.3 Hypothalamus:

Control center for ANS

<u>3. Cerebellum:</u> Hemispheres joined by *vermis* separated by *longitudinal fissure* Folia: folds White matter: *arbor vitae* Grey matter: Cortex (input)+ four deep nuclei/hemisphere (output)

<u>4. Cerebrum:</u> Hemispheres joined by *corpus callosum* separated *by longitudinal fissure* Gyri (wrinkles)

Grey matter:

Cortex

- + Basal nuclei
 - Caudate nucleus
 - Putamen
 - Globus pallidus

BRAINSTEM

MO: 4th ventricle (anterior boundary)

Pons: 4th ventricle

MB: Cerebral aqueduct

Diencephalon: 3rd ventricle (ventral) and lateral ventricles (lateral)

Reticular formation: MO, P, Midbrain, and caudal hypothalamus

- Awareness Habituation Sleep and consciousness Pain modulation (descending analgesic fibers)
- Central pace generator. rhythmic signals Cardiac

Resp. centers

 Motor control, Vasomotor Maintenance of posture and balanceInput to cerebellum

Pons: Sleep, respiration, bladder control

MO: cardiac and vasomotor centers

MO

Anterior: -Pyramids: corticospinal tracts

Posterior (ridges): -Gracile and cuneate fasciculi

Lateral (bulge): -Olive w olivary nucleus: signals form spinal cord and brain to the cerebellum

-Medial lemniscus: decusation which continues to thalamus

Pons

Fascicles

Transverse: join 2 cerebellar hemispheres

Longitudinal: ascending, descending

Midbrain

- 1. Tectum: superior and inferior colliculi
- 2. Central gray matter: Controls awareness of pain
- 3. Cerebral peduncle: anchors cerebrum
- 4. Crus: corticocospinal tracts
- 5. Substantia nigra: Inhibitory signals to thalamus and basal nuclei

6. Tegmentum, w red nucleus: Collaborates with cerebellum for fine motor control

Diencephalon

- Thalamus: 23 nuclei
- 1. Gateway to cerebral cortex for Special senses Somatosensory signals
- 2. Motor control

Feedback loops with cerebellum and basal nuclei

3. Part of limbic system

<u>Hypothalamus:</u> from optic chiasm to mammillary bodies

- 1. Major integrating center of ANS
- Master regulator of endocrine system (anterior pituitary) + secretion of oxytocin and ADH
- Food and water intake
- Circadian rythms
- Emotion_sexual drive

Explains visceral responses (Mammilary bodies)

 Intermediary between hypoccampus and cerebral cortex (formation of new memories)

Epithalamus:

Pineal gland: melatonin secretion

Cerebellum

High density of neurons

Granule cells

Purkinje cells:comparison of intended vs outcome

Deep nuclei: relay output signals

Functions:

1. Control of motor coordination tone and posture coordination of eye and body movements

2. Subconscious evaluation of sensory input (cognitive)

- a. Spatial perception
- b. Passage of time
- c. Tactile input
- d. Emotion

3. Language

Peduncles

Superior (to MB): output Middle (to pons): input from brain, comparing command with outcome Inferior (to MO): propioception

CEREBRUM

<u>Primary</u>: regions receiving input directly from brainstem or sense organs and issuing motor nerve fibers <u>Association area</u>: integrative functions:

- Interpretation,
- Planning,
- Cognitive functions,

Memory

Primary cortex and association areas General senses + somatic pain:

Primary somatosensory cortex postcentral gyrus *lateral sulcus to crown to long. fissure* Sensory homunculus (somatotropy, upside down)

Association area: posterior

Referred pain: due to shared interneuron at spinal cord

<u>Visceral pain:</u> Viscerosensory cortex deep within lateral sulcus

Special senses:

1. Visual: posterior occipital Association area: anterior

2. Auditory: superior temporal and insula Association area: inferior

3. Balance: inferior postcentral gyrus (adjacent to sensations of the face)

4. Gustatory: inferior end of postcentral gyrus and anterior insula

5. Olfactory: medial temporal and inferior frontal lobe.

Association are for gustatory and olfactory: *orbitofrontal area*

Primary motor cortex (execution)

Precentral gyrus

Motor homunculus

Association area: frontal lobe (decision)

Basal nuclei:

- Caudate
- Putamen
- Globus pallidus

Control of highly practiced behaviors

(procedural memory)

Feedback to cortex and thalamus;

Planning and execution of movements

Higher abilities:

Prefrontal cortex: higher abilities: abstract thought, foresight, judgment, responsibility, etc.

1. Centers for gratification and aversion (amygadala aversion)

- 2. Emotion (Amygdala and hypothalamus) Amygdala: Fear
- 3. Memory: Amygdala: emotional

Hyppocampus: new declarative memories (Cognitive + sensory), relayed to cortex (memory consolidation)

1+2+3 ~ personality

Output: Amygdala

- Visceral (hypothlamus)
- Conscious (cortex)

Lateralization:

Left: categorical (sequential and analytical)

<u>Right:</u> representational (integrated, holistic)

Limbic system:

- Cingulate gyrus
- Hyppocampus
- Amygdala
- Hypothalamus
- Thalamus?
- Parts of frontal lobe (orbitofrontal cortex)?

Language control (left hemisphere)

Wernicke's area: Recognition of spoken and written language

Brocas' area: Motor program for speech (pre-motor cortex)

Area affected	Pathology
Substantia nigra	Parkinson's disease
Basal nuclei	Dyskinesias Inhibited movements Exagerated movements (ballismus)
Language areas, VII and XII	Aphasias
Cerebellum	ADHD (impulse control problems)
Hippocampus	No new declarative memories
Frontal lobe	Irresponsible behavior, profanity

AUTONOMIC NERVOUS SYSTEM

Control of visceral function

Basic traits:

- <u>1. Effector (motor)</u> Smooth muscles Cardiac muscles Glands Reflexes also involve afferent (sensory) pathways
- <u>2. Involuntary</u> (But Biofeedback)

<u>3. Two-neuron system,</u> <u>with synapses in ganglia:</u> Pre-ganglionar neuron R: nicotinic, muscarinic Post-ganglionar neuron Cholinergic R: muscarinic Adrenergic R: alpha, beta

<u>4. Modulatory rather than primary</u> <u>stimulation.</u> Denervation causes hypersensitivity

Based on dual innervation: two divisions:

- Sympathetic
- Parasympathetic

Frequently anatagonistic

	Sympathetic (thoracolumbar)	Parasympathetic (cranio-sacral)
Spinal cord origin	T1-L2	III, VII, IX, X S2-S4
Location of ganglia	Far from target Paravertebral Collateral 	Close to target
Postganglionar neurotransmissors	NE	ACh

Note: Ach=acetyl choline; NE=norepir

NE=norepinephrine or noradrenaline

System	Sympathetic	Parasympathetic
Cardiovascular	Increased heart rate Vasoconstriction In organs Vasodilation of skeletal muscle	Decreased heart rate Little effect on vascular tone
Lungs	Bronchodilation	Bronchoconstriction Increased secretion of mucus
Digestive	Decreased motility	Increased motility and secretion
Liver	Glycogen breakdown	Glycogen synthesis
Skin	Piloerection	No effect
Еуе	Pupillary dilation Thinning of lens for far vision	Pupillary constriction
Bladder	No effect	emptying

	Commental estic		
	Sympathetic		
Location of pre-ganglionar neuron	Lateral horn of spinal grey matter T1-L2		
Location of post- ganglionar neuron	Paravertebral ganglia White and grey communicating rami	<u>Spinal route:</u> skin and skeletal m.	
And routes	Different level of paravertebral ganglia	<u>Sympathetic route:</u> Thoracic viscera	
	Collateral ganglia	Splachnic route: All viscera of abdomen and reproductive organs	
Plexuses And additional ganglia	Sympathetic	Plexus Carotid Cardiac Pulmonar 	
	Splachnic	Abdominal aortic plexus: collateral (prevertebral) ganglia	

Parasympathetic			
Location of pre- ganglionar neuron	Nuclei of cranial pairs III, VII, IX, X and S2-S4		
Location of post- ganglionar neuron	Go directly to organs (except for terminal ganglia)		
Terminal ganglia	III Ciliary g.	Ciliary and pupillary constrictor muscles (III)	
	VII Pterygopalatine g. VII Submandibular g	Salivary glands (VII) (except parotid) Nasal glands (VII) Lacrimal glands (VII)	
	IX Otic g.	Parotid gland (IX)	
Cranial pair X (90% of fibers)	Plexus cardiac pulmonary esophageal Abdominal arotic Celiac ganglia	Heart Lungs Esophagus Viscera of abdominal cavity (except distal colon); celiac ganglion	
Sacral portion	Inferior hypogastric plexus Pelvic n.	Distal colon, rectum, bladder, reproductive organs 	

+ adrenal medulla, which is an endocrine organ that secretes adrenaline (85%) and noradrenaline (15%); modified post-ganglionar neuron specialized in secretion